A-DECK, Phase I

Completed Technology Project (2011 - 2011)

Project Introduction

The technical objectives of A-DECK are: 1) Flight Weight including rideshare payloads will be less than 500 Kg. 2) First fundamental frequency of integrated A-DECK System including ESPA or Type C Adapter, payload(s), avionics and release mechanisms will be greater than 50 Hz. 3)After initial qualification, A-DECK must not require additional EELV mission unique design or analysis. 4)A-DECK delivery ICD and Verification products must be sufficient for acceptance of integrated A-DECK as ready to fly meeting launch vehicle, range safety and customer operations requirements. 5)A-DECK mechanical interface to launch vehicle must be through multi-point pinned attachments to the interior of an ESPA or a Type C Adapter. 6)Type C Adapter will utilize standard EELV 62.01" (1575 mm) bolt hole template for both forward and aft interfaces. 7)A-DECK electrical interface to launch vehicle will be through a single shielded multi-line cable to the launch vehicle secondary or designated electrical panel. 8)A-DECK avionics must control, monitor and support all A-DECK mounted spacecraft and/or hosted technical payloads in manner not to interfere with launch vehicle operations or primary spacecraft. 9)A-DECK integration, check out and acceptance will be performed at facilities outside of the Primary Spacecraft integration and check out facility. 10)A-DECK and the A-DECK payloads must remain electrically and mechanically dormant until the launch vehicle transmits its initiate signal to the A-DECK avionics. 11)To the greatest extent possible A-DECK will incorporate existing mechanisms, avionics and components designed to support Small Satellites as an example the Poly Picosatellite Orbital Deployer (P-POD).

Primary U.S. Work Locations and Key Partners

A-DECK, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2
Target Destinations	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

HKM Enterprises Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

A-DECK, Phase I

Completed Technology Project (2011 - 2011)

Organizations Performing Work	Role	Туре	Location
HKM Enterprises Inc.	Lead Organization	Industry	Denver, Colorado
• Kennedy Space Center(KSC)	Supporting Organization	NASA Center	Kennedy Space Center, Florida

Primary U.S. Work Locations	
Colorado	Florida

Project Transitions

February 201

February 2011: Project Start

(

September 2011: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137935)

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Phil Smith

Technology Maturity (TRL)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - □ TX14.1 Cryogenic Systems
 □ TX14.1.2 Launch
 Vehicle Propellant

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

